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Abstract

Before the pandemic, the U.S. unemployment rate reached a historic low that was
close to estimates of its underlying longer-run value and the short-run level associated
with an absence of inflationary pressures. After two turbulent years, unemployment
returned to its pre-pandemic low, and the estimated underlying longer-run unem-
ployment rate appeared largely unchanged. However, economic disruptions pushed
up the short-run noninflationary rate substantially, as high as 6%. This primer exam-
ines these different measures of the natural rate of unemployment and discusses how
they can provide useful insights for policymakers.
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1 Introduction

The U.S. unemployment rate in December 2022 was 3.5%, equal to its pre-pandemic 50-
year low of 3.5% recorded in February 2020. Despite these similarly low levels, the eco-
nomic environment now is very different than before the pandemic. The low unemploy-
ment at the end of the expansion following the Great Recession coincided with a period
of very low inflation: personal consumption expenditures (PCE) price inflation hovered
around 1.5% for much of 2019, below the Federal Reserve’s 2% average inflation goal. By
contrast, recent low unemployment rates are associated with rates of inflation in excess
of 5%.

With this contrast in mind, policymakers often rely on two different unemployment
benchmarks, or so-called natural rates of unemployment, to assess appropriate monetary
policy (Crump, Nekarda and Petrosky-Nadeau, 2020). A first benchmark, the longer-run
unemployment rate, provides a guide for normal economic activity in the longer run, af-
ter all the shocks that are thought to cause a current business cycle, either an expansion
or a contraction, have dissipated. The second benchmark assesses the degree of economic
slack and inflationary pressures in the short run and medium run. This “noninflation-
ary rate of unemployment” associated with price stability provides a guide to how likely
current labor market conditions are to be connected with inflationary pressures. In sum,
these two concepts of the natural rate of unemployment help policymakers address sep-
arate concerns when assessing the current state of the economy.

This paper discusses and provides computer programs to implement some common
approaches to estimating the unobserved longer-run and noninflationary benchmarks
for the natural rate of unemployment following the discussion in Crump, Nekarda and
Petrosky-Nadeau (2020).1 In particular, we review the widely used Congressional Bud-
get Office’s (CBO) noncyclical rate of unemployment, and two alternative ground up ap-
proaches to estimating the longer-run natural rate of unemployment. The first seeks to
extract longer run trends for dissaggregated demographic groups with statistical filtering
methods, while the second seeks to infer the “potential minimum” rates of unemploy-
ment for different demographic groups based on recent business cycle peaks adapting a
methodology used by DeLong and Summers (1988) to measure the economy’s level of
potential output.

The second benchmark rate, meant to assess the degree of inflationary pressures in
the short and medium run, derived from an assumed relationship between price infla-

1The appendix provides additional technical details for the approaches reviewed here and outlines the
accompanying programs to obtain a particular estimate of a benchmark rate of unemployment (link to
programs here). We are grateful to several authors who have share their estimates reported in this paper.
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tion and deviations of actual unemployment from this benchmark – the Phillips curve.
We describe and implement the most common approach to estimate this benchmark rate
of unemployment, a state space representation in which the noninflationary rate of un-
employment is an unobserved variable with an assumed structure to its dynamics. The
values of this state variable are then determined by the movements of observed unem-
ployment and inflation rates via the Phillips curve, while simultaneously accounting for
other factors that affect inflationary pressures in the economy.

The two benchmarks coincide at times, as they did in late 2019. At other times, there
can be a sizable gap, as is the case today, with the noninflationary rate of unemployment
well above its longer-run level. This divergence provides useful context for the recent
Federal Open Market Committee (FOMC) decision to tighten policy to bring inflation
back towards its longer-run goal for price stability.

2 Unemployment rates expected to prevail in the longer

run (u∗LR)

The structure of the economy and the underlying dynamics of the labor market—factors
that change slowly over time—are thought to determine the natural rate of unemploy-
ment in the longer run. Although researchers use a wide range of approaches to esti-
mate the longer-run natural rate, there is a commonality in spirit that can be described
as follows. Suppose there are J demographic groups, indexed by j, each with an unem-
ployment rate u(j, t) at date t and share of the labor force ωl f (j, t). The aggregate rate
of unemployment u(t) can be expressed as the labor force share weighted sum of group
specific unemployment rates:

u(t) = ∑
j

ωl f (j, t)× u(j, t).

Denote each group’s unemployment rate expected to prevail in the longer run by uLR(j, t).
Likewise, denote a labor force share for each demographic group ω

l f
LR(j, t) to be used in

aggregating these longer run rates of unemployment. An estimate of the aggregate rate
of unemployment expected to prevail in the longer run, u∗LR(t), is then obtained from
aggregating the group-specific uLR(j, t) weighting each group by their respective labor
force share:

u∗LR(t) = ∑
j

ω
l f
LR(j, t)× uLR(j, t).
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We focus first on the Congressional Budget Office (CBO) estimate of the “noncyclical
rate of unemployment.” The CBO follows an approach that mainly relies on changes in
the composition of the labor force. According to Shackleton (2018), the longer-run or non-
cyclical rate of unemployment is based on an assumption that the U.S. labor market was
at its longer-run state in 2005, and that this was true for different populations grouped
by age, sex, race and ethnicity, and educational attainment. Using 2005 as a long-run
benchmark for each demographic group’s unemployment rate, the CBO constructs an
aggregate longer-run rate of unemployment for the United States in which changes over
time reflect the evoluation of each group’s actual share of the labor force.2 As a result,
all movements in the CBO’s estimate of the longer-run rate of unemployment come from
slow-moving changes in the makeup of the workforce.

Figure 1 shows the CBO’s noncyclical rate of unemployment (dashed blue line) from
1985 through 2021, along with a range of alternative estimates (shaded area), some of
which we describe next. In general, the longer-run estimates change very gradually over
time, in contrast to the higher-frequency cyclical fluctuations in the actual unemployment
rate (red line).

A second related approach uses statistical methods to estimate the longer-run trends
for different population groups’ unemployment rates from historical experience before
aggregating them into an overall longer-run natural rate of unemployment. This ap-
proach, which can be categorized as “longer-run trends,” tends to imply higher longer-
run rates of unemployment than the CBO estimate. This is especially true around the
prolonged period of relatively elevated unemployment in the aftermath of the 2007–08
financial crisis. Our own application of this approach, shown as the blue solid line in Fig-
ure 1, draws on monthly microdata from the Current Population Survey and a bandpass
filter (Christiano and Fitzgerald, 2003) to extract the changes in each population group’s
unemployment rates over multiple decades.3 Our approach yields an estimate for the
longer-run rate of unemployment of 6.0% in 2005, compared with the CBO’s 5.0% esti-
mate. By the fourth quarter of 2021, the two approaches result in very close estimates of
4.5% for the CBO and 4.4% with our approach.

A third approach seeks to infer the “potential minimum” rates of unemployment for

2That is, each group’s uLR(j, t) for any date after 2005 is assumed to be equal to the group’s average
rate of unemployment in 2005. Prior to 2005 the CBO estimates are based on a Phillips curve relationship
for married men, as described in Shackelton (2018), although it is well approximated by applying the post-
2005 approach backwards. The weights ω

l f
LR(j, t) are the actual shares of the labor force for past and present

estimates and projected shares for projections of the longer run rate of unemployment at future dates.
3Appendix A.1 provides further details. Estimates of longer run rates of unemployment close to this

approach include Morris, Rich and Tracy (2019), Tasci (2012), Hornstein and Kudlyak (2019), Tüzemen
(2019).
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Figure 1: Estimates of U.S. longer-run rate of unemployment, 1985:Q1–2021:Q4

Note: Shaded area represents a range of estimates described in text and detailed in Appendix A;
quarterly data. Sources: Bureau of Labor Statistics (BLS), CBO, and authors’ calculations using CPS
microdata.

different demographic groups based on recent business cycle peaks. Adapting a method-
ology used by DeLong and Summers (1988) to measure the economy’s level of potential
output, this approach obtains each demographic group’s uLR(j, t) as

uLR(j, t + 1) = uLR(j, t) + min
i=1,...,k

[
u(j, t + 1)− uLR(j, t)

i

]
,

where the unemployment rates u(j, t) are first smoothed, using an HP filter with smooth-
ing parameter set to 10, in order to eliminate spurious minima in the series due to sam-
pling noise. Setting k = 4× 8 = 32 (the number of future periods that determine potential
minimum unemployment) with quarterly data, the result is the lowest contour (dotted
blue line) in the range of estimates in Figure 1.4 The approach suggests a longer-run rate
of unemployment of 4.3% in 2005, slightly below the CBO’s estimate during its base year.
For the fourth quarter of 2021, this approach suggests a longer-run ‘potential minimum”
rate of unemployment of 3.3%.

4Our initial choice of 8 years corresponds to the length of a typical business cycle and aligns with the
highest horizon parameter k in the range presented by DeLong and Summers (1988); Appendix A.3 presents
alternative potential minimum estimates for different sets of horizon parameters.
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3 Unemployment rates associated with no inflationary pres-

sures (u∗SP)

The second benchmark rate is meant to assess the degree of economic slack and infla-
tionary pressures in the short and medium run. It is usually derived from an assumed
relationship between price inflation and deviations of actual unemployment from this
benchmark – the Phillips curve.

The most common approach to estimate this benchmark rate of unemployment is to
cast the statistical relation as a state-space model (see Laubach, 2001) in which the nonin-
flationary rate of unemployment is an unobserved variable with an assumed structure to
its dynamics. The values of this state variable are then determined by the movements of
observed unemployment and inflation rates via the Phillips curve, while simultaneously
accounting for other factors, such as changes in production costs and currency exchange
rates, that affect inflationary pressures in the economy.

The estimates of u∗SP for which we present results here specify the observation equa-
tion, or the Phillips curve, as a relation between the growth in price inflation ∆πt and the
gap between unemployment and non-inflationary unemployment with slope γ. It also
controls for past inflation and a set of other potential factors that affect inflation contained
in Et:5

∆πt = ρπ∆πt−1 + γ
(
ut−1 − u∗SP,t−1

)
+ δ∆Et + σπεπ

t (1)(
ut − u∗SP,t

)
= φ

(
ut−1 − u∗SP,t−1

)
+ σûSP vûSP

t (2)

u∗SP,t = u∗SP,t−1 + σu∗SP
vu∗SP

t (3)

The unemployment gap associated with change in inflationary pressures,
(

ut − u∗SP,t

)
,

is assumed to follow a stationary AR(1) process while the unobserved u∗SP,t is assumed
to follow a random walk in equations (2) and (3), respectively. The disturbances to the
observation equation επ

t are assumed to be drawn from an i.i.d. normal distribution
N
(
0, σ2

π

)
, just as the disturbances vûSP

t and vu∗SP
t to the unemployment gap and the in-

flationary rate of unemployment. The latter are drawn from the distributionsN
(

0, σ2
ûSP

)
and N

(
0, σ2

u∗SP

)
, respectively.

5See, e.g., Laubach (2001) or more recently Crump et al. (2019, 2022) who combine the two concepts, u∗LR
and u∗SP, in a joint estimation framework. The relation, inspired by the work of Phillips (1958) showing
wages tend to increase when the unemployment rate is low, is often associated with Friedman (1968) where
it is more precisely expressed in growth rates of inflation, capturing the accelerationist hypothesis. In
that case the unobserved short run u∗SP,t is the non-accelerating inflation rate of unemployment (NAIRU).
Expressed in levels it is closer conceptually to a non-inflationary rate of unemployment (NIRU).
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Figure 2: Estimates of U.S. stable-price rate of unemployment, 1985:Q1–2022:Q4

Note: Shaded area represents the full range of estimates from set of sources described in text detailed
in Appendix B; quarterly data. Sources: BLS and authors’ calculations using CPS microdata and
estimates reviewed in Crump, Nekarda and Petrosky-Nadeau (2020).

The model parameters are estimated by maximum likelihood applying the Kalman fil-
ter to evaluate the likelihood function on quarterly data up to the onset of the pandemic,
from 1985:Q1 to 2019:Q4. All model parameters are estimated save the variance of the
nonstationary process which is fixed outside the estimation to avoid a “pile-up problem”
(Stock, 1994). In particular, we set σu∗SP

to 0.04 in the baseline estimates below, the lower
range of estimates discussed in Laubach (2001). We then filter estimated model to ob-
tain estimates of u∗SP,t from 1985:Q1 to 2022:Q4. Inflation is measured as year-over-year
growth in the core PCE price index, the observed unemployment rate ut is the headline
U-3 rate, and the additional factor Et in our baseline includes the year-over-year growth
rate of the nominal broad U.S. dollar index. A more detail discussion of the data and base-
line model parameter estimates along with a set of alternative specifications is provided
in Appendix B.

Figure 2 plots a range (shaded area) of alternative state-space model estimates of the
noninflationary rate of unemployment from 1985:Q1 through 2022:Q4. The solid blue line
highlights our preferred approach to addressing the unique challenges from the COVID-
19 pandemic, which we will discuss in greater detail next. The figure also includes the
CBO’s estimate of the longer-run rate of unemployment (blue dashed line) for reference.
The figure highlights the degree to which estimates of the noninflationary rate of unem-
ployment fluctuate with the actual rate of unemployment. It also shows that, over longer
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periods, the noninflationary rate tends to converge back towards the level of the longer-
run rate of unemployment.

4 The noninflationary rate of unemployment during the

pandemic

Estimating the noninflationary rate of unemployment has been challenging due to the
exceptionally large and rapid movements in the unemployment rate during the second
quarter of 2020, reaching nearly 15% within two months. In the Phillips curve framework
for a given level of the noninflationary rate of unemployment, such a rise in the unem-
ployment rate warrants a more pronounced slowdown in inflation than actually occurred.
As a result, models that use the period just before the onset of the pandemic as a base-
line imply a sharp increase in the noninflationary rate of unemployment to fit the sharp
increase in actual unemployment without a commensurately large decline in price pres-
sures. This is illustrated by the dashed blue line in Figure 3, where the noninflationary
rate of unemployment rises sharply to just over 8% in the second quarter of 2020.
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Preferred estimate

No control for temporary layoffs

Headline unemployment

Figure 3: Estimates of stable-price unemployment through the pandemic, 2015:Q1–
2022:Q4

Note: Shaded area represents the full range of estimates from set of sources described in text and
detailed in Appendix B; quarterly data. Sources: BLS and authors’ calculations using CPS microdata
and estimates reviewed in Crump, Nekarda and Petrosky-Nadeau (2020).

However, much of the rise in unemployment during this period was driven by people
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on temporary layoff who were expected to return to work. Indeed, the share of unem-
ployed people on temporary layoff rose from 14% before the pandemic to 78% in April
2020 (see Wolcott et al., 2020), only to return to its pre-pandemic level by mid-2021. This
contrasts with past recessions, when the share of the unemployed on temporary layoff
did not depart significantly from its historical average.

Temporary layoffs do not contribute to inflationary pressures in the same way as per-
manent job losses: employers tend to maintain ties with these workers so they can quickly
bring them back and ramp up production as demand returns. Following this insight, our
preferred estimate (solid blue line in Figure 3) controls for the spike in temporary layoffs
and results in a limited increase in the noninflationary rate of unemployment at the start
of the pandemic.6 That said, as the share of temporary layoffs reverted to its historical
level and PCE price inflation gained momentum in 2021, our estimated noninflationary
rate of unemployment progressively rose to 6% by the fourth quarter of 2021, equaling
the model that does not control for temporary layoffs (dashed blue line).

5 Conclusions

Two benchmark natural rates of unemployment can serve as useful guides in assessing
the current state of the labor market, particularly relative to the Federal Reserve’s goals
of maximum employment and price stability. We outline various approaches for estimat-
ing both the longer-run rate of unemployment and the rate of unemployment associated
with price stability. The unprecedented economic conditions during the pandemic cre-
ated unique challenges for estimating the latter benchmark. Though longer-run and non-
inflationary rates of unemployment typically do not coincide at a point in time, any gap
between the two benchmark rates tends to close over time. As such, the current sizable
gap following the disruptions to the economy from the pandemic is likely to close as the
FOMC follows an expected path of removing policy accommodation, intended to slow
inflation to levels consistent with its price stability goals.

6The unemployment rate controlling for temporary layoffs that enters our preferred model for the pan-
demic is the headline unemployment rate through 2019:Q4, but for all dates from 2020:Q1 onward, the
difference between temporary layoffs and their 2019:Q4 value is subtracted from the unemployed stock
before dividing by the labor force to obtain the unemployment rate. See appendix additional details.
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Appendix

A Estimating the longer-run unemployment rate (u∗LR)

The range of estimates for u∗LR,t in Figure 1 are from the following sources: CBO noncycli-
cal rate of unemployment; Crump et al. (2022); Hornstein and Kudlyak (2019); Morris,
Rich and Tracy (2019); Tasci (2012); Tüzemen (2019); our “longer-run trends” approach;
and our measure of potential minimum unemployment.

For our estimates of uLR(j, t), we consider demographic groups based on age (16 to
24, 25 to 34, 35 to 44, 45 to 54, 55 and older), sex, race and ethnicity (Black, Hispanic,
White, and other) and education (high school or less, some college or associate’s degree,
and bachelor’s degree or beyond), and three approaches to building a longer run u∗LR for
which with provide a brief description of the accompanying programs used to obtain the
estimates.

Description of data preparation and general steps for estimation of u∗LR

For all of our estimates of the longer-run unemployment rate, we perform the following
general steps for data preparation:

• Extract CPS basic monthly microdata files and harmonize over time the classifica-
tion of educational attainment.

• Partition the population into subgroups by the characteristics listed above, where
each subgroup is indexed by j.

• For each month t, use CPS sample weights to calculate monthly estimates of stocks
of employed E(j, t) and unemployed U(j, t) for each group j; calculate the labor
force L(j, t) for each group j as the sum of the employed and unemployed: L(j, t) =
E(j, t) + U(j, t); and sum across groups to obtain the aggregate labor force: L(t) =

∑j L(j, t). We then seasonally adjust these stocks and take quarterly averages.

• Compute labor force shares ωl f (j, t) for each group j as the ratio of the group-
specific labor force to the aggregate labor force: ωl f (j, t) = L(j, t)/L(t). Compute
group-specific unemployment rates u(j, t) as the ratio of the group-specific unem-
ployment stock to the group-specific labor force: u(j, t) = U(j, t)/L(j, t).

The result of this data preparation is a set of quarterly time series on labor force shares and
unemployment rates for each group, which are compiled in the spreadsheet data.xlsx
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that serves as the input to the MATLAB programs used to estimate u∗LR, described below.
Note that labor force shares ωl f are denoted by omegaLF and unemployment rates u are
denoted by u in the code.

A.1 “Longer-run trends”

The long-run estimates uLR(j, t) and ω
l f
LR(j, t) are obtained by extracting slow moving

trends in the group specific ωl f (j, t) and u(j, t) with a bandpass filter on quarterly data
between 1985:Q1 and 2019:Q4 at a horizon of 40 years or more. The trends beyond 2019
are obtained from a linear projection of the group-specific trend over the last two decades.

Description of programs for estimation of u∗LR - “Longer-run trends” approach

• extract bpf trend.m estimates ω
l f
LR(j, t) and uLR(j, t) using a bandpass filter on the

quarterly time series for labor force shares ωl f (j, t) and unemployment rates u(j, t).7

• Then the MATLAB script main uLR.m produces a quarterly time series of estimates
of the aggregate longer-run rate of unemployment u∗LR(t) following our “Longer-
run trends” approach by computing the weighted sum over groups of these esti-
mates of the group-specific longer-run unemployment rates uLR(j, t) using the cor-
responding estimates of the longer-run labor force shares ω

l f
LR(j, t) as the weights:

u∗LR(t) = ∑
j

ω
l f
LR(j, t)× uLR(j, t)

A.2 CBO’s noncyclical rate of unemployment

The CBO’s approach builds a counterfactual rate of unemployment applying each group’s
rate of unemployment as observed during a reference period: uLR(j) = u(j, t0) and
u∗LR,t = ∑j ωl f (j, t) × uLR(j). Choosing 2005 as the base period (i.e. setting t0 = 2005)
and the demographic groups described above replicates the CBO’s noncyclical rate of
unemployment.

Description of programs for estimation of u∗LR - “CBO-inspired” approach

We replicate the CBO estimates of u∗LR following the approach outlined in Shackelton,
2018, Appendix B:

7We use the optimal random walk filter of Christiano and Fitzgerald (2003).
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Figure A.1: Comparison of CBO-inspired longer-run trends estimate with published CBO
noncyclical rate of unemployment

Note: Quarterly data. Sources: CBO and authors’ calculations using CPS microdata.

• The MATLAB script main uLR.m sets 2005 as the base year (t0 = 2005), following
the CBO methodology, and produces a quarterly time series of estimates of the ag-
gregate longer-run rate of unemployment u∗LR(t) following our “CBO-inspired” ap-
proach by computing the weighted sum over groups of group-specific unemploy-
ment rates in the base year u(j, t0) using the time series of observed labor force
shares ωl f (j, t) as the weights:

u∗LR(t) = ∑
j

ωl f (j, t)× u(j, t0)

A.3 Minimum potential unemployment

We adapt the concept of potential output proposed by DeLong and Summers (1988) to
let recent business cycle peaks inform a rate of unemployment approximating having
reached full employment. We first smooth the group series u(j, t) to eliminate spurious
minima due to sampling noise, using a Hodrick-Prescott filter with a smoothing parame-
ter set to 10. Then this approach defines uLR(j, t) as

uLR(j, t + 1) = uLR(j, t) + min
i=1,...,k

{
u(j, t + i)− uLR(j, t)

i

}
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The length of the forward-looking window, k, is set to 8× 4 = 32 in our baseline using
quarterly data. This choice is guided by the length of a typical business cycle of 8 years,
which is a reasonable assumption for the horizon over which unemployment should re-
turn to its potential minimum rate. [ADD explanation of extrapolation for T-k+1 to T:
estimate slope of PMU between T-k and previous]

Figure A.2 plots potential minimum unemployment rate estimates for values of k set
to 5 years and 8 years.

1985 1990 1995 2000 2005 2010 2015 2020
2

3

4

5

6

7

8

9

10

11

12

13

k = 8 years
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Headline unemployment

Figure A.2: Comparison of potential minimum unemployment rate estimates for different
values of horizon parameter k

Note: Quarterly data. Sources: Authors’ calculations using CPS microdata.

Description of Programs for Estimation of u∗LR - “Minimum potential unemployment”
approach

• functions/potential minimum.m implements an adaptation of the DeLong and Sum-
mers (1988) algorithm on the smoothed u(j, t) to estimate a quarterly time series of
potential minimum unemployment rates uLR(j, t) for each group j.

• Then the MATLAB script main uLR.m estimates a quarterly time series of u∗LR follow-
ing our “Minimum potential unemployment” approach by computing the weighted
sum over groups of these estimates of the group-specific longer-run unemployment
rates uLR(j, t) using the corresponding observed labor force shares ωl f (j, t) as the
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weights:
u∗LR(t) = ∑

j
ωl f (j, t)× uLR(j, t)

B Estimating the stable-price unemployment rate (u∗SP)

The range of estimates for u∗SP,t in Figures 2 and 3 are from the following sources: Aaron-
son et al. (2015); CBO, short-run; Crump et al. (2022); our baseline model; our preferred
pandemic specification; and additional variations on our state-space model described
next. These variations to our model include the baseline model with demographic ad-
justment to the unemployment rate, joint estimation of a wage Phillips curve and a price
Phillips curve, and joint estimation of u∗SP,t and underlying trend inflation. The range
also includes u∗SP,t estimates using data through 2021:Q4 to estimate model parameters,
and various alternative controls during the pandemic subsample – specifically adding the
goods share of consumption expenditures and commodity price inflation as an additional
explanatory variables.

The point estimates for the slope of the Phillips curve with the change in inflation are
in a range of 0 to −0.028 across all specifications estimated through 2019, consistent with
Crump et al. (2019). The uncertainty around the estimates of u∗SP,t is sufficiently large
that it is not possible to statistically distinguish the different specifications. Replacing
lagged inflation with inflation expectations in the Phillips curve gives a Phillips-curve
slope coefficient point estimate of −0.0011, with 0.28 as the estimated coefficient on the
change in inflation expectations.8

Description of programs for estimation of u∗SP

To obtain our estimates of u∗SP, we specify each state-space model described above through
Excel files called by functions in MATLAB and follow the notation in MATLAB’s Econo-
metrics Toolbox documentation for ssm class. We estimate a given model via maximum
likelihood on quarterly time series data from 1985:Q1 through 2019:Q4. Then we filter on
data through 2021:Q4.

• The MATLAB script main uSP.m estimates specified models and plots output

• The Excel workbook data.xlsx contains the data for estimation, downloaded from
FRED

8We use 4-quarter ahead median inflation expectations on CPI from the Survey of Professional Forecast-
ers, since this and the GDP deflator are the only inflation expectations series available for the duration of
our estimation sample.)
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• The Excel workbook models/spec <model name>.xlsx contains the specification
for estimation of a particular model, with the following worksheets:

calibration - set values for parameters that are specified exogenously, i.e. not
estimated based on data, namely σu∗SP

in the state-space model equations below.

x - state variables, mapped to xt in the state-space model equations below, with
type specifying the process the variable is assumed to follow: 0 for ARMA
(stationary), 2 for random walk (nonstationary).

y - observables, mapped to yt in the state-space model equations below.

z - exogenous regressors, mapped to zt in the state-space model equations be-
low.

A, B, C, D, Beta, v, e - specification of state-space system in terms of constants
and parameters, mapped to A, B, C, D, β, vt, et respectively in the state-space
model equations below.

• The Excel worksheet parameters.xlsx contains the user-specification of initial val-
ues (intival), lower bounds (lb), and upper bounds (ub) for parameters to be es-
timated, namely γ, φ, ρπ δ, σûSP , and σπ in the state-space model equations below.
(Note: intival must be specified, but lb or ub can be left blank which results in a
particular parameter being unbounded below or above, respectively.)

The following routines in the functions subdirectory are called when running main uSP.m:

◦ The load data.m function loads data from data.xlsx into a timetable object.

◦ The construct dataset.m function transforms raw data into transformed series
that enter the state-space model, with transformations specified iteratively in the
transformation column of the x, y, and z worksheets of the model specification
workbook.

◦ The load spec.m and map calibration.m functions load a given model specification
from models/spec <model name>.xlsx into a struct object composed of table ob-
jects for each worksheet, and sets any calibrated parameter values.

◦ The load parameters.m function loads initial values and bounds for parameters to
be estimated from parameters.xlsx into a table object

◦ The ParamMap.m and map parameters.m functions map the model specification struc-
ture spec into MATLAB’s required format for input in state-space model estimation
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Estimation u∗SP - Phillips curve state-space framework

Our baseline state-space model specification is as follows:
(∆ denotes the first-difference operator)

∆πt = ρπ∆πt−1 + γûSP,t−1 + δ∆Et + σπεπ
t , επ

t ∼ N (0, 1)

ûSP,t = ut − u∗SP,t

ûSP,t = φûSP,t−1 + σûSP vûSP
t , vûSP

t ∼ N (0, 1)

u∗SP,t = u∗SP,t−1 + σu∗vu∗
t , vu∗

t ∼ N (0, 1)

The following matrix equations map this Phillips curve framework into MATLAB’s
Econometrics Toolbox state-space model notation and setup (as outlined in the documen-
tation for specifying a state-space model and proceeding with estimation). It is in this
format that we specify a model in the Excel workbook infrastructure contained in the
files models/spec <model name>.xlsx, with various worksheets corresponding to spe-
cific vectors or matrices in the MATLAB state-space model setup and named accordingly.

Description of data for estimation u∗SP

The state-space model is specified at a quarterly frequency. All untransformed time series
data are quarterly averages of monthly values.

• ut = unemployment rate: baseline model
= counterfactual unemployment rate adjusted for the rise in temporary layoffs:

pandemic model

· FRED series UNRATE, optionally using additional series UNEMPLOY, LNS13023653,
and CLF16OV to control for the share of the unemployed on temporary layoff
from 2020 onward relative to their 2019:Q4 share9

• πt = core PCE price index, year-over-year percent change

· FRED series PCEPILFE

• Et = nominal USD exchange rate, year-over-year percent change

9Specifically, the unemployment rate controlling for temporary layoffs that enters our preferred model
for the pandemic is the headline unemployment rate, i.e. the ratio of the unemployed to the labor force,
for all dates through 2019:Q4; then for all dates from 2020:Q1 onward, the difference between temporary
layoffs and their 2019:Q4 value is subtracted from the unemployed stock before dividing by the labor force
to obtain the unemployment rate.

17

https://www.mathworks.com/help/econ/ssm-class.html
https://www.mathworks.com/help/econ/ssm.estimate.html


· FRED series TWEXBMTH and TWEXBGSMTH spliced together after transforming the
series
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